University of Illinois at Urbana-Champaign

07 March 2014

VARIATION IN FINGERSPELLING TIME, PINKY EXTENSION, AND WHAT IT MEANS TO BE ACTIVE

Jonathan Keane University of Chicago

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Goals of	this talk			

- 1. Describe the temporal properties of ASL fingerspelling
- 2. Show variation in the temporal properties of fingerspelling
- 3. Translate models of spoken language articulatory phonology to handshape
- 4. Provide an explicit method of phonetic implementation for handshape
- 5. Use this model to make predictions about variation in handshape

Background

 Background
 Methods
 Timing results
 The articulatory model of handshape
 Pinky extension

 A basic description of fingerspelling
 Pinky extension
 Pinky extension
 Pinky extension

- Simple: a set of static (except for -J- and -Z-) handshapes strung together sequentially, where each maps on to one letter in an English word.
- Many (Wilcox, 1992 and Akamatsu, 1985) note that this description is not quite accurate. Rather signers perceive overall contours, not individual handshapes.
- Fingerspelling makes up anywhere from 12–35% of ASL discourse. (Padden, 1991 and 2003)

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
What f	ingerspelling	g looks like		
Γ				

data.mp4

Why ASL fingerspelling for timing and handshape variation?

Fingerspelling is a loanword system for borrowing written English words into ASL. It involves quick and sequential handshape changes, unlike signing. This results in an ideal data set to look at variation in timing and handshape because there are

- a large number of individual tokens
- a huge variety of contexts
- involves most of the handshapes in ASL

There has been relatively little phonetic work on ASL generally, and fingerspelling specifically.

Most studies of the temporal properties of fingerspelling have been limited because they

- measured rate as duration of word/number of letters
- analyzed data from manually coded English settings
- measured a small number of words with limited formational properties

Reported fingerspelling rates have considerable variation (Quinto-Pozos, 2010; Bornstein, 1965; Hanson, 1981; Wilcox, 1992; Geer, 2010) :

- ▶ a lower bound of ~125 msec per letter
- ▶ an upper bound of ~300 msec per letter
 - ~100 msec for holds
 - ► ~200 msec for transitions

Reich and Bick (1977) are the only to use a segment based analysis which showed word medial letters are fingerspelled quicker than initials or finals. Although this was on manually coded English. Background Methods

Questions about fingerspelling timing

- 1. How long are segments on average?
- 2. Do they vary by position?
- 3. Do they vary by (letter) identity?
- 4. Do they vary by signer?

Methods

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Data coll	ection			

- 4 native signers, 1 early learner (4 coded so far) produced
- ► 600 unique words
- repeating each word twice
- being recorded by 2 or 3 video cameras
- recording at 60 FPS
- ▶ for a total of 21,453 letters

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
C-O-S-T				

images/cost1212.mp4

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Holds and	d transitior	าร		

Holds the time periods where the entire hand configuration is stable

Transitions the time periods between holds

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
C-O-S-T ac	ain			

images/cost1212.mp4

Timing results

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
All letters				

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Conclusio	ns			

- holds are ~4omsec
- transitions are ~100msec
- first and last letters are significantly longer
- for the medial letters, they tend to be held for less time in later positions in words
- letters with movement and orientation changes are held longer
- signers vary greatly

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Future im	plications			

Timing information is important for

- Language learning and acquisition norms
- Perception studies
- Input into models of fingerspelling production

The articulatory model of handshape

(Brentari, 1998)

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Selected	fingers			

- are described as the most salient fingers for a given handshape,
- are often (but not always!) extended, with other fingers (more) flexed,
- are used by many models of sign language phonology.

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Selected	fingers			

- are described as the most salient fingers for a given handshape,
- are often (but not always!) extended, with other fingers (more) flexed,
- are used by many models of sign language phonology.

There is independent evidence for their existence:

- restrictions on handshapes in signs,
- selected fingers contact the body,
- selected fingers are preserved in compounds.

(Brentari, 1998)

Erol et al. (2005)

Backgro	ound	Methods	Timing results	Т	he articulatory model of hand	Ishape Pinky	extension	
The articulatory model of handshape								
	group		jo	oint	tract variable	valu	ies	
	selecte	ed fingers	Μ	ICP	SF-MCP	-15–9 0–9	o°	
			P	IP	SF-PIP	0-9	0°	
			Ν	ICP	SF-ABDUCTION	[±ABDUCTE	D]	

Backgro	ound	Methods	Timing results		The articulatory model of han	dshape Pinky exten	ision	
The articulatory model of handshape								
	group			joint	tract variable	values	-	
	selecte	ed fingers		MCP PIP MCP	SF-MCP SF-PIP SF-ABDUCTION	-15–90° 0–90° [±ABDUCTED]	-	
	second	dary selecte	d fingers	MCP PIP	SSF-MCP SSF-PIP	-15–90° 0–90°	_	

Backgr	ound	Methods	Timing results		The articulatory model of hand	shape Pinky extension
The	articul	latory mod	el of han	dshap)e	
	group			joint	tract variable	values
	select	ed fingers		MCP PIP MCP	SF-MCP SF-PIP SF-ABDUCTION	-15–90° 0–90° [±ABDUCTED]
	secon	dary selecte	d fingers	MCP PIP	SSF-MCP SSF-PIP	-15–90° 0–90°
		b oppositior b abduction	1	CM CM	CM-OPPOSITION CM-ABDUCTION	-45-90° 0-90°

Backgro	ound Methods	Timing results	Т	he articulatory model of hands	hape	Pinky extension
The articulatory model of handshape						
	group	j	joint	tract variable		values
	selected fingers	1	МСР	SF-MCP	-1	5-90°
		1	PIP	SF-PIP	(o−90°
		1	МСР	SF-ABDUCTION	[±ABDU	CTED]
	secondary selected	fingers	МСР	SSF-MCP	-1	5–90°
		1	PIP	SSF-PIP	(o−90°
	thumb opposition	(СМ	CM-OPPOSITION	-4	5–90°
	thumb abduction	(СМ	CM-ABDUCTION		o−90°
	nonselected fingers	8 8	all	NSF	[±FL]	exed]

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
General h	vpothese	S		

1. Because gestures are dynamic, signing does not consist of static, sequential handshapes, but rather articulator gestures which blend into each other.
| Background | Methods | Timing results | The articulatory model of handshape | Pinky extension |
|------------|-----------|----------------|-------------------------------------|-----------------|
| General h | nvpothese | S | | |

- 1. Because gestures are dynamic, signing does not consist of static, sequential handshapes, but rather articulator gestures which blend into each other.
- 2. The hand configuration of a specific segment will vary in predictable ways based on the surrounding context.

1. The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Specific h	vpotheses	5		

- 1. The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).
- 2. The selected fingers are the sources of coarticulatory pressure.

Pinky extension

Background

Pinky extension

B-U-I-L-D-I-N-G; half speed

Methods

Background

Timing results

The articulatory model of handshape

Pinky extension

B-U-I-L-D-I-N-G; half speed

Methods

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Data colle	ection			

- 4 native signers, 1 early learner (4 coded so far) produced
- ► 600 words
- repeating each word twice
- being recorded by 2 or 3 video cameras
- recording at 60 FPS
- ▶ for a total of 21,453 letters

A still image of each letter was annotated for pinky extension, defined as:

- The tip of the pinky was above the plane perpendicular to the palmar plane, at the base of the pinky finger (the MCP joint).
- The proximal interphalangeal joint (PIP) was more than half extended.

-R- [+ext] -R- [-ext] -L- [+ext] -L- [-ext] -D- [+ext] -D- [-ext]

 Background
 Methods
 Timing results
 The articulatory model of handshape
 Pinky extension

 What affects the -L- handshape?
 Image: Comparison of the state of

-D-

-I-

-N-

-G-

-L-

-B-

-U-

-I-

Background
Methods
Timing results
The articulatory model of handshape
Pinky extension

What affects the -L- handshape?
Image: Comparison of the comparison

-D-

-I-

-N-

-G-

-B-

-U-

-I-

1

-L-

↑ current handshape -B-, -C-, -F-, -I-, -J-, or -Y-; -A-, -S-, -E-, or -O-; other

Pinky extension

What affects the -L- handshape?

current handshape groups

Extended (and selected) pinky: -B-, -C-, -F-, -I-, -J-, or -Y-

Flexed and selected pinky:

-A-, -S-, -E-, or -O-

other

 Background
 Methods
 Timing results
 The articulatory model of handshape
 Pinky extension

 What affects the -L- handshape?

 Image: I

word type name; noun;

non-English

↑ current handshape -B-, -C-, -F-, -I-, -J-, or -Y-; -A-, -S-, -E-, or -O-; other

Background

Methods

Timing result

The articulatory model of handsha

Pinky extension

What affects the -L- handshape?

previous/following handshape groups

Extended pinky (alone): -I-, -J-, or -Y-

Extended pinky (with other fingers): -B-, -C-, or -F-

other

word boundary

Background

thods

Timing results

Pinky extension

What's special about -A-, -S-, -E-, and -O-?

Flexed and nonselected pinky: -L- with and without pinky extension

Flexed and selected pinky: -A- and -s- have nearly no pinky extension

Flexed and selected pinky: -E- and -O- both are close to the edge of our coding scheme for pinky extension.

1. Articulatory models of speech production are generalizable to sign languages.

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Conclusio	ns			

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Conclusio	ns			

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.
- 3. These models make specific predictions about contextual variation that are supported by data from ASL fingerspelling.

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Conclusio	ns			

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.
- 3. These models make specific predictions about contextual variation that are supported by data from ASL fingerspelling.
 - 3.1 The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).

Background	Methods	Timing results	The articulatory model of handshape	Pinky extension
Conclusio	ns			

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.
- 3. These models make specific predictions about contextual variation that are supported by data from ASL fingerspelling.
 - 3.1 The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).
 - 3.2 The selected fingers are the sources of coarticulatory pressure.

I must also acknowledge the contributions of many who contributed in ways big and small:

Fingerspelling data Andy Gabel, Rita Mowl, Drucilla Ronchen, and Robin Shay

Main advisors Diane Brentari, Jason Riggle, and Karen Livescu

Other researchers

Susan Rizzo, Greg Shakhnarovich, Rachel Hwang, Katie Henry, Julia Goldsmith-Pinkham, and Linda Liu

Support

NSF Doctoral Dissertation Research Improvement Grant Coarticulation and the phonetics of fingerspelling BCS 1251807 and the Rella I Cohn fund for graduate student research

References I

- Bornstein, Harry. 1965. Reading the manual alphabet: A research program for developing a filmed program for teaching the manual alphabet. Centennial Series 2. Gallaudet College Press.
- Brentari, Diane. 1998. A prosodic model of sign language phonology. The MIT Press.
- Erol, Ali, George Bebis, Mircea Nicolescu, Richard D Boyle, and Xander Twombly. 2005. A review on vision-based full dof hand motion estimation. Computer vision and pattern recognition-workshops, 2005. CVPR workshops. IEEE computer society conference, 75–75. IEEE.
- Geer, Leah. 2010. ASL fingerspelling: Comparing native and non-native signers. Unpublished manuscript Gallaudet University; Washington, DC.
- Hanson, V.L. 1981. When a word is not the sum of its letters: Fingerspelling and spelling. Teaching american sign language as a second/foreign language. proceedings of the third national symposium on sign language research and teaching. boston, ma. october 26–30, 1980, ed. by F. Caccamise, M. Garretson, and U. Bellugi, 176–85.

References II

- Johnson, Robert E, and Scott K Liddell. 2011a. Toward a phonetic representation of hand configuration: The thumb. Sign Language Studies 12.316–333.
- Johnson, Robert E, and Scott K Liddell. 2011b. Toward a phonetic representation of signs: Sequentiality and contrast. Sign Language Studies 11.241–274.
- Liddell, Scott K, and Robert E Johnson. 2011a. A segmental framework for representing signs phonetically. Sign Language Studies 11.408–463.
- Liddell, Scott K, and Robert E Johnson. 2011b. Toward a phonetic representation of hand configuration: The fingers. Sign Language Studies 12.5–45.
- Quinto-Pozos, David. 2010. Rates of fingerspelling in american sign language. Poster at 10th Theoretical Issues in Sign Language Research conference, West Lafayette, Indiana.
- Reich, Peter A., and Margaret Bick. 1977. How visible is visible english? Sign Language Studies 14.59–72.

References III

- Sandler, Wendy. 1989. Phonological representation of the sign: Linearity and nonlinearity in american sign language. Foris Pubs USA.
- Wilcox, Sherman. 1992. The phonetics of fingerspelling, chap. 4: Targets and Transitions. John Benjamins Publishing Company.