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Abstract

Following the Articulatory Model of Handshape (Keane b), which

mathematically defines handshapes based on joint angles, we propose two

methods for calculating phonetic similarity: a contour differencemethod that
assesses the amount of change between handshapes within a fingerspelled

word, and a positional similarity method that compares similarity between
pairs of letters in the same position across two fingerspelled words. Both

methods are validatedwith psycholinguistic evidence based on similarity rat-

ings by deaf signers.�e results indicate that the positional similaritymethod
more reliably predicts native signer intuition judgments about handshape

similarity. �is new similarity metric fills a gap (the lack of a theory-driven

similarity metric) in the literature that has been empty since effectively the

beginning of sign language linguistics.

 Introduction
Phonetic and phonological similarity has been a topic of exploration for linguists

for quite some time (the seminalMiller &Nicely () study aswell asmany subse-

quent studies on spoken languages). Although it has been well explored for spoken

languages, signed languages have seen much less research. �is work is a further

*�is work would not be possible without the contributions of the Deaf signers who partici-

pated in our experiments. �is manuscript greatly benefited from the feedback of our colleagues

Leah Geer, Jordan Fenlon, and Jason Riggle, as well as the anonymous reviewers. All mistakes and

omissions are our own.�is work was also supported in part by a Doctoral Dissertation Research

Improvement Grant:    and  Research Grant  .
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contribution in an effort to change that. We propose a novel method of quantify-

ing similarity between handshapes that is theoretically driven. We then test this

method against signers’ subjective similarity ratings and find that our method is

significantly correlated with signers’ intuitions about form similarity. Although

much of the previous work has not looked at fingerspelling, we use fingerspelling to

isolate handshape similarity from other aspects of American Sign Language ().

�e reason for this will be discussed further in section .

At the beginning of systematic research into signed languages, there were a

number of attempts to quantify handshape similarity within signs (Locke ;

Weyer ; Lane et al. ; Stungis ; Richards & Hanson ). Most of these
studies relied on signer judgments of similarity or confusion between two stimuli.

Researchers then produced clusters of handshapes based on this data. In this way,

researchers were using psycholinguistic data to produce a linguistic model of simi-

larity, rather than using psycholinguistic data to confirm the validity of a linguistic

model. �e lack of a theory-driven similarity metric, which makes it impossible

to use psycholinguistic data to test linguistic models, was mentioned explicitly by

Lane et al. () as a necessity because there simply were not appropriate linguis-
tic models to test: “�e present study, then, undertakes to see what sort of featural

analysis for  results when, using certain specific statistical techniques, we pro-

ceed from psychological data to a linguistic model, rather than the reverse”.

All of the studies mentioned above came to the conclusion that there are (at

least) two distinct categories of handshapes: open handshapes with the fingers of

the hand extended, and closed handshapeswith the fingers of the hand flexed. Indi-

vidually, each study developedmore finely grained distinctions. For example, Lane

et al. () found clusters of handshapes that they then used to separate hand-
shapes into groups defined by distinct features. Moreover, Stungis () proposed

that this clustering could be turned into a continuous feature space. He found

that handshapes could be decomposed along two dimensions: extension (open or

closed) and uniform breadth (simplistically this is whether or not all of the fingers

have the same configuration).

�ere has been much more work on phonological models of signed languages

(Mandel ; Liddell & Johnson ; Sandler ; van der Hulst ; Brentari

; Eccarius ; Sandler & Lillo-Martin ). More recently, there has been

work on the phonetics of sign languages (Tyrone et al. ; Johnson & Liddell
a; Johnson & Liddell b; Liddell & Johnson a; Liddell & Johnson b;

Whitworth ;Mauk&Tyrone ; Keane b). Of these, Tyrone et al. (),
Mauk & Tyrone () (for location, and contact), and Keane (b) (for hand-

shape) adopted the framework of Articulatory Phonology which explicitly links
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phonological representations of signs with articulatory gestures that produce those

signs, which are phonetic in nature.

�e models that have been proposed are exactly the kinds of models that Lane

et al. () observed were missing at the time of their studies on handshape sim-
ilarity. Most of these models divide the hand into subcomponents, each of which

can take categorical values (via binary features, dependency models, etc.). For ex-

ample, the Prosodic Model (Brentari ) represents handshapes using a branch-

ing feature system. It consists of specifications indicating which fingers are ac-

tive (selected) and which fingers are inactive (nonselected), as well as what the

flexion-extension configuration is of the base (metacarpophalangeal) and the non-

base (proximal interphalangeal and distal interphalangeal) joints.

Keane (b), and his Articulatory Model of Handshape, furthers Brentari’s

model by developing an explicit connection between the phonological specifica-

tion for a handshape, and target joint angles for each joint of the (phonetic) hand

configuration. Hismodel can produce continuous (as well as categorical) measures

of hand configuration which have been shown in previous studies to better match

data on handshape similarity and confusability (Stungis ). Additionally, these

continuous measures provide a straightforward way to compare two handshapes.

Other phonological models could, in principle, be used, although each would re-

quire the development of a translation from categorical phonological features to

continuous joint angles or an independent method of comparing the categorical

features directly to each other. For these reasons, we will use Keane’s model as

a start for our theory-driven measure of phonetic similarity. �e nature of this

similarity will be described in detail in the next section, and then tested with psy-

cholinguistic evidence in section .

 Metrics for similarity for  fingerspelling
Handshapes in sign languages do not occur in a vacuum: they are just one com-

ponent that makes up lexical signs, along with the other major parameters: loca-

tion, movement, orientation, and non-manual markers (Stokoe et al. ; Battison
). In , fingerspelling is a loanword system used to borrow (written) English

words into the language. In the fingerspelling system, each orthographic letter is

mapped onto a set of  unique handshapes plus, in a limited number of cases, a

non-default palm orientation or with an added movement. �ese handshapes are

executed in quick succession, in the sequence of the letters of the written word.

Broadly speaking, fingerspelling has been found to conform to many aspects of
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the  phonological system (Padden ; Brentari ; Brentari & Padden ;

Cormier et al. )¹. Because the main contrast between letters in fingerspelling
is, for the most part, only a handshape contrast, fingerspelling is a perfect place to

test theories of the representation of handshape independent of the possible con-

founds of movement or location that would be inherent in using lexical signs or

nonce signs that conform to the phonological structure of lexical signs. Similarity

across these three parameters has been studied by Hildebrandt & Corina (),

who found that signs that had identical movements (or identical locations, for the

(sign naive) hearing subjects only) were rated as more similar than signs that had

identical handshapes by native signers as well as by hearing subjects. Late learners

of , however rated signs that had identical handshapes as much more similar

than signs that had identical locations ormovements. Hildebrandt&Corina ()

did not compare (and did not purport to compare) the relative similarities between

different handshapes, however. Instead they were comparing pseudo-signs with 

other pseudo-signs that had one or two parameter(s) (movement, location, hand-

shape) that were identical, but all other parameters were different and asking sign-

ers to pick one pseudo-sign as the most similar in order to determine which pa-

rameter impacted similarity the most. Our study, on the other hand, delves into

the relative similarities of handshapes, rather than looking at just identical or not

identical handshapes in a study of sign similarity.

Keane’s model (Keane b) provides joint angle targets for each handshape

used in  fingerspelling.�is allows for a straightforward comparison of individ-

ual handshapes by taking the difference between the two sets of joint angle targets.

�is difference can then be thought of as the similarity between any given pair of

handshapes.�is difference is further refined byweighting each joint based on how

proximal (or how close to the center of the body) it is.�is weighting is supported

by work that shows that movement of more proximal joints generates larger visual

differences, which has been linked to visual sonority for signed languages (Brentari

). Additional support for this kind of sonority in sign languages can be found

in (Hildebrandt & Corina ). Movement and location are parameters that in

general use more proximal joints than handshapes, which results in larger visual

differences. It is exactly those parameters where identical movements and loca-

tions were rated as more similar than identical handshapes (this pattern is found

in general, and specifically with native signers).

¹Cormier et al. () were studying British Sign Language fingerspelling that uses a two-
handed system that is completely distinct, and formationally very different from the one handed

system used in .
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. Comparing two handshapes
To make this comparison explicit, consider the  fingerspelling handshapes --

and --. Each handshape is made up of phonological features for each part of the

hand that has been found to be phonologically contrastive, given in table .�ese

tables are a notational variant of the phonological features from (Brentari ),

which were modified slightly in (Keane b). For further details about these

specifications, we refer readers to (Keane b; Brentari )

group feature -- --

psf members index, middle,

ring, pinky,

thumb

index, middle,

ring, pinky

base () joint ext flex

nonbase ( and ) joints mid flex

abduction adducted adducted

ssf members none thumb

base ()  mid

nonbase ( and )  ext

thumb opposition opposed unopposed

nsf members none none

joints  

wrist orientation -default -default

Table : Phonological specifications for -- and -- handshapes. Examples of these

can be found as the first two letters of the first word (--) in figure .�e groups

are the levels of selection: psf: primary selected fingers, ssf: secondary selected fin-

gers, nsf: nonselected fingers, thumb: opposition features specific to the thumb. If

a group has no members, the features for those members are not applicable (indi-

cated here with ).

�e next step is to move from these phonological features to joint angles which

represent the phonetic target for the handshape. To do this, the ArticulatoryModel

of Handshape (Keane b) uses translations for each phonological feature to

(canonical) joint angle targets. For example, for the extension values of the base
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and nonbase joints, the following joint angles can be used: full extension (although
not hyperextension) is °, full flexion (for most individuals) is °, and finally,
the position between full extension and full flexion, o�en labeled as mid, is °.
For more details about this translation mechanism see (Keane b). It should

be noted, that these angles are the angles formed by the bones on either side of

the joint, rather than deviation from anatomical or some other position (e.g. full

extension). Using the computational implementation of the Articulatory Model of

Handshape (Keane a), we can calculate joint angle targets for our two example

handshapes, -- and -- (see table ).

From the tables of joint angle targets, comparing two handshapes is simple.

Each joint angle from one handshape can be subtracted from the corresponding

joint angle of the other handshape. For example, the index  for the -- (°) is

subtracted from the index the -- (°) resulting in a difference of °; the index

 for the -- (°) is subtracted from the index  for the -- (°) resulting in a

difference of °; the index² for the -- (°) is subtracted from the index

for the -- (°) resulting in a difference of °; and so on, for each joint angle.

�e full set of differences can be seen in table .

Although it is possible to have a degree difference that is negative, the value

our models produce are always positive. For example, the thumb  joint in our

example: if we subtract the -- (°) from the -- (°) we get -°. However, we

use the absolute value of the difference in degrees (i.e. themagnitude of the change,

ignoring direction) when calculating our similaritymetrics. Additionally, it should

be noted that each degree of freedom, for joints that have more than one, is added

to the score as if it were a separate joint. For example, the  joint of the thumb

in our example would contribute  +  +  =  degrees of difference (before the
weights are applied). Other possible approaches include dividing the contribution

of each degree of freedom difference by the number of degrees of freedom for each

joint or to use the simple angle between the two bones rather than decomposing

into degrees of freedom. �ese methods will make slightly different predictions

from each other, and determining which most closely matches signers’ perception

is le� for future work. It should be noted that the vast majority of the differences

in the scores comes from joints on the hand that have a single degree of freedom,

where this problem is moot.

Finally, to get a single number that represents how different the handshapes are

²Again, the  joint has two degrees of freedom (flexion and abduction) the angles here are

just the flexion portion of the  joint.�e abduction portion has been omitted





from each other, we sum all of the joint differences together³. But first, we multiply

each cell by a weighting factor⁴: s and s have a weight of , s have a weight

of , s, s have a weight of , and the wrist has a weight of . It is known

that joints that are more proximal will result in larger parts of the body moving.

Additionally, there is evidence from other research that shows that these larger vi-

sual differences, are a type of visual sonority for signed languages (Brentari ).

For this reason, we weight the scores for similarity such that a ° difference at the

 joint will be quantified as more different than a ° difference at the  joint.

A�er the weights, we can sum each joint angle difference, to arrive at a single num-

ber that is a quantification of the difference between the -- and -- handshapes:

. Now that we have a quantification for the difference between two individual

handshapes, we need to extend this method to account for handshapes sequences.

. Handshape sequences (that is, fingerspelling)
�e proposal explained above for individual handshape similaritymust be extended

to account for fingerspelled words which are composed of sequences of multiple

handshapes. All models of fingerspelling perception, except for the initial cipher

model (Blasdell & Clymer ), posit that fingerspelling perception is not sim-

ply the identification of each handshape individually. Rather, the transitions play

some role in perception (Wilcox ).�eMovement Envelope�eory for finger-

spelling (Akamatsu ) goes further and identifies that it is the overall shape of the

hand opening and closing within a word that aides perception. Akamatsu ()

shows that children acquiring fingerspelling first identify and mimic the overall

movement of fingerspelling, and then master full execution. �e Movement En-

velopes of two words could be thought of as a proxy for similarity: if two words

share similar or the same Movement Envelope, they will be more similar than two

words that have very different Movement Envelopes.�e Movement Envelope can

be interpreted in two different ways:

�e first interpretation is that the crucial aspect of fingerspelling that generates

the perception of an overallMovement Envelope is the transition between different

handshapes (or letters).�is view is supported by work on sonority and local lex-

³More accurately, we sum all of the joint degree of freedom differences together, since each

degree of freedom contributes equally to the scores.

⁴�ese weights are from (Keane b) directly, who admits that these numbers are a first step

towards the appropriate visual weights. �ey capture the generalization that more proximal joints

generally make more visually salient movements. �e scale of the difference between them needs

to be refined by further study of visual sonority.
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joint angles for -- handshape

flexion abduction

   

index ° ° ° °

middle ° ° ° °

ring ° ° ° °

pinky ° ° ° °

  

thumb ° ° (-°,-°,°)

joint angles for -- handshape

flexion abduction

   

° ° ° °

° ° ° °

° ° ° °

° ° ° °

  

° ° (°,°,°)

δ(-- ; --).

flexion abduction

   

° ° ° °

° ° ° °

° ° ° °

° ° ° °

  

° ° (°,°,°)

flexion rotation pronation

wrist -° ° °

flexion rotation pronation

-° ° °

flexion rotation pronation

° ° °

Table : Phonetic joint angle targets for each joint of the hand and wrist for the -- (le�) and -- (center) handshapes

as well as the difference between each joint angle for -- and -- (right).

Each of the interphalangeal joints ( and ) have a single degree of freedom: flexion-extension. �e 

joint has two degrees of freedom: flexion-extension and abduction-adduction. For the thumb, there is only one

interphalangeal () joint, the  joint only has one degree of freedom (flexion-extension), and the abduction

column triplet of numbers is for the three degrees of freedom of the thumb’s  joint. �e wrist has three degrees

of freedom: flexion-extension, rotation, and pronation-suppination.

For the differences in degrees: these are the magnitudes of the differences between the -- and -- handshapes,

therefore there are no negative values.





icalization of fingerspelling (Brentari ). In local lexicalization, a fingerspelled

word is reduced during a single discourse, from the full fingerspelled version to a

reduced version that looks more like a loan sign. Which letters are preserved and

which letters are omitted is not random: the transitions between letters that pre-

serve the largest movements are kept, first those with a non-default orientation or

movement, and then those that preserve an overall alternation of open and closed

handshapes.�is pattern has been linked to sonority, which is the relative strength

(or salience) of a specific sound or syllable in spoken languages or of a specific

movement or syllable in sign languages (Brentari ). Borrowing her example,

when the word ----- is being locally lexicalized, the output is ---, with

an additional movement of the wrist downward between the -- and --, and an

additional movement of the wrist sideways between -- and --. �e -- and --

are deleted because both - and - are transitions between closed handshapes,

adding no salient twisting movements of the wrist or opening/closing movements

of the fingers.

�e second interpretation is that the crucial aspect of fingerspelling that gen-

erates the perception of an overall Movement Envelope is the overall shape of the

whole word, including what position each of the different levels of openness or

closedness of the hand occur in. Under this interpretation, it is not only the overall

extension of the fingers that is important, but where within the word each class of

handshape is. To make this concrete, and in the critical case where it differs from

the previous interpretation: consider the two fingerspelled sequences -- and

--. In the first, the word starts with a closed handshape (--), then has an open

handshape (--), and then ends with a closed handshape (-- again). In the sec-

ond, the word starts with an open handshape (--), then has a closed handshape

(--), and then ends with an open handshape (-- again). Using just the contours

between the handshapes as a guide (as with the first interpretation), these words

look similar: they each have the same sequence of transitions (just in a different

order): - and -. In the second interpretation, despite the fact that there are the

same transitions, the positions of each open or closed handshape is important in

distinguishing these two sequences.

Based on these two disparate interpretations of the Movement Envelope, there

are two possibilities for comparison. �e first method, what we call the contour
difference method, follows directly from the first interpretation of the Movement
Envelope, and the secondmethod, whatwe call the positional similaritymethod fol-
lows directly from the second interpretation of the Movement Envelope. It should

be noted that although these different methods were inspired by these two differ-

ent interpretations of theMovement Envelope theory, they stand fully independent
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of it. �e contour difference method emphasizes the overall contour of the finger-
spelled words: that is how one letter transitions to the next. Whereas the positional
similarity method looks at the position of each letter within the word, and deter-
mines how similar the handshapes in that position are with handshapes in the same

position of other words.

Figure : Examples of -- (le�) and -- (right). Photos here are the canonical
forms of each letter in both words.�is pair of words is used in the diagrammatic

descriptions of the two methods in figures  and 

-- -- --

∆ + ∆ = contour score for --

-- -- --

∆ + ∆ = contour score for --

∣ c.s. -- − c.s. -- ∣ = contour diff. score

For this pair, the contour difference score is:

∣( (--; --) + (--; --) ) − ( (--; --) + (--; --) )∣ =
∣( ∆ + ∆ ) − ( ∆ + ∆ )∣ =
∣(  +  ) − (  +  )∣ = 

Figure : Contour difference score calculation between the words -- and --
. Under this metric, a sequence of all open or all closed handshapes will have a

low score, and a word with a sequence of open-closed handshapes will have a high

score.
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�e first method results in what we call a contour difference score; this score
is based on the general finding that there are (at least) two classes of handshapes

(open and closed). In this method, each handshape in the word is compared to the

one that follows it, that is, the differences between each sequential pair of letters

is calculated and then summed together. Under this metric, a word that has a se-

quence of all open or all closed handshapes will have a low score, and a word that

has a sequence of open-close handshapes will have a high score. In order to arrive

at a similarity score for a pair words using this method, a contour score for each

word is calculated, and then the difference between them is calculated.⁵ See figure

 for a diagram of an example pair of words.

�e contour differencemethod is based on an extension of (Hanson et al. ).
Hanson et al. found that individual letters that are more closed (e.g. --, --, --)
are more easily confused with each other (because of similarity) than more open

letters (e.g. --, --, --). Extending this to fingerspelled sequences: words that

include more closed handshapes are considered more similar to one another, and

words that include more open handshapes are more dissimilar when compared to

the first group. Although to our knowledge, this extension has never been pub-

lished in this level of detail, it has been used by sign linguists. In fact, the first

experiment (described in section ) was run by two of the authors using exactly

this distinction⁶. When the ratings using this binary measure didn’t align with ex-

pectations, we began our collaboration and designed both the contour difference
method (to match as closely as possible this first method with a continuous mea-

sure) as well as the positional similaritymethod described below.
�e second method results in what we call positional similarity score. In this

method, each pair of letters in the same position within the two words are com-

pared to each other and their difference is calculated.�e differences for each po-

sition in the word are then summed together. With this metric, words that have

the same or similar handshapes in the same positions will be scored as more sim-

ilar than those that have dissimilar handshapes in the same positions. Under this

metric words that are similar will have a low score, and words that are dissimilar

will have a high score. See figure  for a diagram of an example pair of words.

Although the contour difference score can easily compare twowords of different
lengths, the positional similarity score as described above, is limited to words that

⁵As described above, the contour method has some edge cases that seem problematic, for ex-

ample the sequences -- and --will have the same contour scores because they have all of the

same transitions in them.

⁶�is experiment was run as a norm that was to feed into a second experiment testing an inde-

pendent phenomenon that depended on similarity.
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-- -- --

∆ + ∆ + ∆ = positional similarity score

-- -- --

For this pair, the positional similarity score is:

(--; --) + (--; --) + (--; --) =
∆ + ∆ + ∆ =
 +  +  = 

Figure : Positional similarity score calculation between thewords -- and --.
Under this metric words that have similar handshapes in corresponding positions

will have a low score, and words that are dissimilar will have a high score.

have the same number of letters in them. In the experimental data described below,

words with either  or  letters were compared in pairs that were the same length,

as well as in pairs that differed in length. In order to attain a positional similarity
score, a composite metric was developed:�e shorter word was held constant, but

then compared to all possible strings of the longer word where one of the letters

was deleted.�e mean of this score resulted in the final positional similarity score
for mismatched lengths. For example, to generate an overall positional similarity
score for the pair of words -- and ---, a score was calculated for each of

the following pairs: (-- ; --), (-- ; --), (-- ; --), and (--

 ; --). �e mean of these four individual scores was taken as the positional
similarity score for δ(-- ; ---).�ough there are other methods that could
be used to compare words with mismatched lengths, this method is a first step in

that direction, which deserves further research.

 Psycholinguistic experiment
Previous studies relied on data from psycholinguistic experiments to develop clus-

ters of handshapes that are similar and then proceeded from their psycholinguistic

data to a linguistic model of handshape similarity rather than the reverse.�e two

proposed methods here, the contour difference method and the positional similar-
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ity method for calculating the similarity of two fingerspelled words (which could
also be applied directly to any sequence of handshapes) are the opposite: they use

a linguistic model of the phonetics-phonology interface for handshape (the Artic-

ulatory Model of Handshape (Keane b)) to generate a theory-driven metric

of similarity. We conducted two separate fingerspelling similarity judgment stud-

ies to determine which of the two methods of similarity estimation – contour or
positional similaritymethod – better predicts the signers’ subjective ratings of sim-
ilarity. For the first rating study, manually similar words contained compact hand-

shapes (following Hanson et al. ()). For the second rating study, similar and
dissimilar word pairs were selected based on a theory-driven handshape similarity

metric (Keane b). Subjects’ scores were then fit and compared using several

hierarchical linear regressions.

. Methods
.. Participants

Twenty-four Deaf  signers participated in two separate online rating studies. In

the first study, there were  Deaf  signers (mean age = .,  = .,  female)

and in the second study,  Deaf  signers (mean age = .,  = .,  female)

participated. All participants acquired  before age  and reported using  as

their primary and preferred language. All participants were congenitally deaf and

had severe (– dB) to profound (– dB) hearing loss.�e experiment was

administered online and all participants received gi� certificates upon completion.

.. Stimuli and procedure

In the first rating study,  pairs of manually similar and dissimilar fingerspelled

words were selected based on psychological theories of handshape similarity; the

manually similar words contained consonant handshapes that were argued to be

confusable by native signers (e.g. --, --, --, and --; (Hanson et al. ; Richards
& Hanson )) and vowel handshapes that use the same compact hand config-

urations and are easily confusable (e.g. --, --, and --; (Lane et al. )), as in
---, --, --, and ---. Examples of dissimilar words under these pre-

vious studies include ---, ---, --, and --. �e stimuli presented

were either both from a list of words with more closed handshapes (e.g. --,

--, --, --) or they were both from a list of words with more open hand-

shapes (e.g. ---, --, ---, ---). One participant only completed
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half of the experiment, so we removed all of their responses (although including

them does not impact the results). �ere were four observations where partici-

pants reported difficulties viewing the videos, and thus did not report a similarity.

No other data was removed for the analysis.

In the second rating study,  word pairs were selected based on our theory-

driven handshape similarity metrics (Keane b), that is, the manually similar

words all proceeded fromopen to closed (onemovement open to closed), therewas

one change in selected fingers between letters, and no orientation changes (e.g. to

or from --), as in --, --, ---, and ---.�e dissimilar word pairs

containedmore than onemovement and change in selected fingers and orientation

change, examples include ---, ---, --, and--. Words in the similar

and dissimilar groups were matched on length ( or  letters), frequency (from

 (Baayen et al. )), concreteness, and all had an  translation equivalent
and no phonological or orthographic overlap. All participants responded to all the

stimuli and no data was removed for the analysis.

For both studies, the stimuli were grouped as similar or dissimilar in order to

create the stimuli for the experiment, getting a range of words we expected would

have varying similarities. Ourmeasures, however, are continuous and canmeasure

small as well as large differences in similarity.�erefore, we used all stimuli pairs in

ourmodels regardless of their starting classification, calculating similarity based on

the contour difference and the positional similarity method as predictors (detailed
discussion of the models is in the following section).

In the first rating study, fingerspelled word pairs were produced by a deaf native

 signer who was filmed at a frame rate of . frames per second. �e edited

video clips were uploaded to an online survey tool for rating and were divided into

two blocks containing  pairs each to allow for a break. In the second study,

word pairs were presented as print. Participants were asked to rate all word pairs

for manual similarity based on how similar the words in the pair feel to each other

when they fingerspelled them to themselves on a – scale based (–do not feel

similar at all;  – feel very similar). Ratings from the online surveys were exported

as a comma-separated text file for further analysis.

.. Analysis

It should be noted that our two experiments were collected independently.�e sec-

ond experiment was conducted to directly test that our contour differencemethod
and our positional similarity method were quantifying something that is psycho-
logically real, and to see which method matches the data better. �e first experi-
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ment, however, was run as subset of a separate experiment, well before the formu-

lation of either method by our research team.�is being the case, those ratings can

be thought of as a type of independent verification since they were collected in a

kind of double-blind condition where neither the subjects nor the experimenters

knew the hypotheses being tested (and thus neither could influence the outcome of

the experiment). Additionally, as described in the methods above, the two experi-

ments used slightly differentmethodologies: in the first signerswere presentedwith

videos of fingerspelled words and they were asked to rate the similarity between the

pair. In the second study, signers were presented with printed words, and asked to

think about fingerspelling them, and rate the similarity with how they felt when

fingerspelled.�us, in the second experiment, pure visual similarity of the stimuli

itself was not influencing the signers’ ratings. Models were fit both using subject

and experiment as hierarchical grouping variables, as well as using experiment as

a predictor variable. Although ratings in the second experiment were significantly

lower (only by about . points), there was not variation in which predictors were

significant when the experiment was used as a predictor or grouping variable in the

model. Because using experiment as a predictor variable or as a grouping variable

(where the intercept and slope of the predictor variables are allowed to vary) does

not change the results or interpretation of the other predictor variables, we will

use experiment as a grouping variable as that accurately represents the hierarchical

structure of the data (individual signers are nested within experiments).

In order to test which of the two methods of scoring (contour difference scores
or positional similarity scores) predicts signers’ ratings, several hierarchical linear
regressions were fit and then compared. All models were fit with the lme4 pack-
age version .- (Bates ) in  ( Core Team ). All scores were divided by

the length of the words in order to not unfairly penalize long words. In cases with

mismatched word lengths, the scores were divided by , since the positional simi-
larity score for mismatched pairs is the mean of the set of comparisons across the
three letter word and all combinations of the four letter word minus one letter. For

both scores, a higher score is less similar, and a lower score is more similar (i.e. per-

fect similarity is zero). If the scores are predictive of the signers’ similarity ratings,

we expect a negative correlation (this is because the signers rated on a scale where

higher ratings were more similar, whereas both the contour difference and the po-
sitional similarity scores are higher if the words are less similar). All scores were
scaled to z-scores for comparison of effect sizes. In each model, the subject and the

experiment the subject’s data was collected in were included as hierarchical group-

ing variables.�is allows us to see if there were systematic differences between the

two sets of data collection.�e models were:
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. Null model with no predictor variables, which had varying intercepts (
mixed effects) for subject group, subject, first word of the pair, and second word of

the pair.

. Contour difference score model with predictor variables of the contour dif-
ference score for the word pair, the length of the words ( letters,  letters, or mis-

matched), and the two way interaction of these.�ere were varying intercepts and

slopes for subject group, subject, first word, and second word.

. Positional similarity score model with predictor variables of the positional
similarity score for the word pair, the length of the words ( letters,  letters, or

mismatched), and the twoway interaction of thesewith the same varying intercepts

and slopes as the previous model.

. Results
Each model will be discussed in detail below, but the predictor variable for posi-
tional similarity score was significantly correlated with signers’ ratings in the pre-
dicted direction in every model that it was included in. As the positional similarity
score went up (with our model predicting that the word pairs were less similar)

the signers’ ratings went down (meaning the signers thought these words were less

similar). For model comparison, which will be discussed in detail in the next sec-

tion, figure  shows predictor coefficients for all models except the null model.

In this plot the coefficients for each predictor variable in each model are plotted

along with their confidence intervals. �us, for each predictor, the dot is the co-

efficient estimate, the thick line is the  confidence interval, the thin line is the

 confidence interval. We can consider the coefficient is a true effect, and is not

attributable to noise in the sample, when the confidence intervals do not overlap

zero. �is plot additionally allows us to determine not only if we have confidence

that an effect is statistically significantly different from zero, but also in which di-

rection: positive or negative (as well as the magnitude of the effect size, this kind

of analysis of significance follows Gelman et al. (); Gelman (); Gelman &
Carlin ()).

�e null model serves as a baseline of comparison to see if the complexity as-

sociated with adding predictors to the model is justified given the data. Because

there are no predictors in this model, there are no significant effects to report.

In the contour difference score model, the contour difference score alone does

not significantly predict the signers’ ratings. �ere is a significant effect of length,

where four letter words are more similar than mismatched words or three letter

words.�e interaction of length and contour difference score is significant, when
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the words are both three letters, then the smaller the contour difference score, the

more similar the signers rated the pair. No other predictors had significant effects.

In the positional similarity score model, the similarity score significantly pre-
dicts the signers’ ratings in the expected direction (the lower the similarity score,

the higher the signers’ ratings). Additionally, word pairs that had the same lengths

(either both  letters or both  letters long) were rated significantly more similar

than word pairs that were mismatched. No other predictors had significant effects.

It stands out that in no model does the contour difference score alone signifi-
cantly predict signers’ ratings of the similarity of fingerspelled words. In contrast,

the positional similarity score, does significantly predict signers’ similarity ratings
and in the predicted direction. Again, see figure  for a visualization of the predic-

tor coefficients for all models except the null model.⁷

For the two predictors that are the center of this paper, the two different meth-

ods for comparing two fingerspelled words, we expect both to have a negative cor-

relation because the signers rated on a scalewhere higher ratingsweremore similar,
whereas both the contour difference and the positional similarity scores are higher
if the words are less similar. A negative coefficient in a hierarchical linear model
shows exactly this negative correlation between predictor variables and outcome

variables. As described above, the only metric that is significantly different from

zero (and in the correct direction: negative) is the positional similarity score in the
positional similarity score model. �e contour difference score is not significantly
different from zero (and thus we cannot asses the direction, or sign of the effect) in

any model it is included in.

. Model comparison
Although there is not a single, best method for model comparison, especially for

hierarchicalmodels like those used here, a number ofmethods have been proposed

and have seen some acceptance (see (Gelman & Hill ) for an overview).

⁷We also fit a full model which included predictor variables of the positional similarity score,
contour difference score, the length of the words ( letters,  letters, ormismatched), and all possible

two and three way interactions with the same varying intercepts and slopes as the previous model.

�is model was meant to test if there were any interactions or mediating effects when the similarity

scores were included together.�e results from this model matched that of the other models: posi-
tional similaritywas significantly (negatively) correlated with signers’ similarity ratings and contour
difference as not significantly correlated with signers’ similarity ratings. Additionally, there was no
interaction between the two. Because the results of this model mirror that of the others and in the

interest of space, we will not discuss it further.
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Figure : Coefficient plot for contour difference score and positional similarity score
models.�ick lines are  , thin lines:  , and dots: estimates of the predic-

tor coefficients. If a particular predictor’s confidence intervals do not overlap with

zero, we can have confidence that the effect of that predictor is statistically signifi-

cant.�is plot allows us to evaluate not just simple significance, but also the sign or

direction of the effect (positive or negative), as well as see the relative magnitudes

of each effect.

�e first kind of comparison uses information theoretic measures to determine

if the extra complexity of adding predictors is justified by the data. In other words,

does adding a given parameter give us enough predictive power to justify the added

complexity it introduces to the model.�ere are twomainstream information the-

oretic measures: Akaike Information Criterion () and Bayesian Information

Criterion (). Both methods can be fit to different non-nested models applied

to the same underlying data set (how we are using them here) (Burnham & An-

derson ; Anderson & Burnham ). For both  and , lower numbers

indicate a better fit of the model to the data. In the most conservative recommen-

dations, a difference of  or more indicates that the models differ significantly and

themodel with the lower score should be preferred (all differences between the 

and  for our models were larger than this threshold). Using the , the sim-

plest model that is justified given the data is the positional similarity score model
(: .) which is significantly more well supported than the contour score
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model (: .). Using the , the simplest model that is justified given the

data is also the positional similarity score model (: .). See table  for s
and s.

�e second kind of comparison uses a new method for calculating R, or the

variance of the data explained by the model. Traditionally, calculating R for hier-

archical models has not been straightforward. However recent work (Nakagawa &

Schielzeth ; Johnson ) has developed a method that gives a marginal R,

which corresponds to the R of the predictors alone, and a conditional R, which

corresponds to theR of the predictors alongwith the varying intercepts and slopes.

With both traditional R and with this new calculation, R ranges from zero (no

variance of the data is explained by the model) to one (all of the variance of the

data is explained by the model). We will only discuss the marginal R here, be-

cause we are concerned with the variance explained by the predictors, and not the

the varying intercepts or slopes. Under this metric, the model that explains the

most variance of the data is the positional similarity score model (R = .). Both
the contour difference score model and the null model explain very little variance

of the data (R = . and R = , respectively).

model   R

null . . .

contour difference . . .

positional similarity . . .

Table : Model comparison using , , and marginal R

It is clear that one model stands out: the positional similarity score model (the
simplest model justified given the data using , , andmarginal R). Addition-

ally, even when the contour difference score is included in a model that is not se-

lected (either alone, or together with positional similarity), it does not significantly
predict signers’ similarity ratings.

 Conclusion
We have demonstrated that positional similarity score is the theory-driven descrip-
tion of handshape similarity that best matches signers’ intuitions when asked to

rate the similarity of fingerspelled words. �e similarity metric proposed here is

exactly the kind of theory-driven metric that was recognized as missing from the
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similarity research in the s and s, which has also been independently con-

firmed with signers’ intuitions of similarity.

It is clear that the positional similarity approach is a superior fit to the data when
compared with the contour difference approach. In order to define similarity in
sequences of handshapes (e.g. fingerspelling), it is more important to look at the

positional configuration of handshapes than it is to concentrate solely on the tran-

sitions between handshapes. Similarity between stimuli (words, sentences, etc.) is

known to affect many psycholinguistics processes (e.g. the phonological similar-

ity effect in short term memory (Wilson & Emmorey ), form priming effects).

Our positional similaritymetric is an easy to usemetric that can be used to evaluate
and control for the similarity of stimuli in other experiments.

�e positional similaritymethod is supported by our psycholinguistic data.�is
approach is one of the two possible interpretations of previous work on the percep-

tion of fingerspelling (i.e. the Movement Envelope), and it matches with signers’

ratings of similarity.

Although we presented convincing evidence that the contour differencemethod
is not supported by the data from signers’ similarity ratings, there might be other

areas where handshape contours are important. As discussed above, signers’ have

shown sensitivity to handshape contours in local lexicalization (Brentari ). Ad-

ditionally, signers show a tendency to chose the variant of -- (open or closed)

in order to make a more contrastive (larger) contour difference with surrounding

handshapes (Keane et al. ; Keane & Brentari ).
In our studies, we used signers’ ratings of similarity, but previousmethods, such

as handshape confusion under visual noise (Lane et al. ; Stungis ), could
be used to test our positional similaritymethod as well. Because our positional sim-
ilarity method is a metric of phonetic similarity, a metric concerning the form of
the hands making the handshapes, we predict that we would see similar results for

other tasks to what we found with our experiment here. Confusion in visual noise

might attenuate or magnify the differences between two handshapes as quantified

by our metric. However, there is no evidence that, when given a sequence of hand-

shapes (e.g. fingerspelling) in noise, the positionally-sensitive positional similarity
method would do worse than the contour differencemethod.�is, however, needs
to be tested empirically, and that is le� to future work.

�is study has a number of limitations. In our work, we used target or canoni-

cal joint angle measures and not actual joint angles measured while the signer was

fingerspelling. Methods for measuring these joint angles are possible in some con-

ditions with special equipment. As these techniques are perfected, they could be

used to measure the difference in joint angles between actual handshape tokens.
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Further, this extension would allow researchers to test if similarity judgments are

consistent for within type phonetic variation as compared with across type phono-

logical forms (in other words: are handshapes that are phonetically different vari-

ants of the same phonological handshape rated on the same or different scale as

handshapes that are phonologically different.). Additionally, the proximity weights

adopted from (Keane b) should be refined using perceptual data to scale them

appropriately to signers’ perception.

Finally, our positional similarity method answers a call made nearly  years
ago.�e Articulatory Model of Handshape, combined with our positional similar-
ity approach, is a phonetically and phonologically theory-driven similarity metric
for comparing handshapes.�is metric not only produces results that match intu-

itions from previous studies (Locke ;Weyer ; Lane et al. ; Stungis ;
Richards & Hanson ), but also produces results that match signers’ similarity

ratings of fingerspelled words.
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