Phonology 2013 10 November 2013

WHAT HANDSHAPE TELLS US ABOUT ACTIVE VERSUS INACTIVE ARTICULATORS

Jonathan Keane
University of Chicago

L phonology Hs tract variables Predictions Case study ре coarticulation

Goals of this talk

- 1. Translate models of spoken language articulatory phonology to handshape
- 2. Provide an explicit method of phonetic implementation for handshape
- 3. Use this model to make predictions about variation in handshape

adapted from (Browman and Goldstein, 1992, pp28)

Sign language phonology

Handshape portion from the Prosodic Model

SL phonology Hs tract variables Predictions Case study PE coarticulation

Selected fingers

- are described as the most salient fingers for a given handshape,
- are often (but not always!) extended, with other fingers (more) flexed,
- are used by many models of sign language phonology.

SL phonology HS tract variables Predictions Case study PE coarticulation

Selected fingers

- are described as the most salient fingers for a given handshape,
- are often (but not always!) extended, with other fingers (more) flexed,
- are used by many models of sign language phonology.

There is independent evidence for their existence:

- restrictions on handshapes in signs,
- selected fingers contact the body,
- selected fingers are preserved in compounds.

Handshape portion from the Prosodic Model

Handshape tract variables

Degrees of freedom

group	joint	tract variable	values
selected fingers	MCP	SF-MCP	-15-90°
	PIP	SF-PIP	0-90°
	MCP	SF-ABDUCTION	$[\pm ABDUCTED]$

group	joint	tract variable	values
selected fingers	MCP	SF-MCP	-15-90°
	PIP	SF-PIP	0-90°
	MCP	SF-ABDUCTION	$[\pm ABDUCTED]$
secondary selected fingers	MCP	SSF-MCP	-15-90°
	PIP	SSF-PIP	0-90°

group	joint	tract variable	values
selected fingers	MCP	SF-MCP	-15-90°
	PIP	SF-PIP	0-90°
	MCP	SF-ABDUCTION	$[\pm ABDUCTED]$
secondary selected fingers	MCP	SSF-MCP	-15-90°
	PIP	SSF-PIP	0-90°
thumb opposition	CM	CM-OPPOSITION	-45-90°
thumb abduction	CM	CM-ABDUCTION	0-90°

group	joint	tract variable	values
selected fingers	МСР	SF-MCP	-15-90°
	PIP	SF-PIP	0-90°
	MCP	SF-ABDUCTION	$[\pm ABDUCTED]$
secondary selected fingers	МСР	SSF-MCP	-15-90°
	PIP	SSF-PIP	0-90°
thumb opposition	CM	CM-OPPOSITION	-45-90°
thumb abduction	CM	CM-ABDUCTION	o-90°
nonselected fingers	all	NSF	[±FLEXED]

Predictions

General hypotheses

 Because gestures are dynamic, signing does not consist of static, sequential handshapes, but rather articulator gestures which blend into each other.

General hypotheses

- Because gestures are dynamic, signing does not consist of static, sequential handshapes, but rather articulator gestures which blend into each other.
- 2. The hand configuration of a specific segment will vary in predictable ways based on the surrounding context.

Specific hypotheses

1. The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).

Specific hypotheses

- 1. The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).
- 2. The selected fingers are the sources of coarticulatory pressure.

Case study: B-U-I-L-D-I-N-G

B-U-I-L-D-I-N-G; half speed

B-U-I-L-D-I-N-G; half speed

Pinky extension coarticulation

phonology Hs tract variables Predictions Case study PE coarticulation

Data collection

- ▶ 4 native signers, 1 early learner (4 coded so far) produced
- ▶ 600 words
- repeating each word twice
- ▶ being recorded by 2 or 3 video cameras
- recording at 60 FPS
- ▶ for a total of 21,453 letters

phonology Hs tract variables Predictions Case study PE coarticulation

Pinky extension

A still image of each letter was annotated for pinky extension, defined as:

- ► The tip of the pinky was above the plane perpendicular to the palmar plane, at the base of the pinky finger (the MCP joint).
- ► The proximal interphalangeal joint (PIP) was more than half extended.

What affects the -L- handshape?

-N-

-U-

-I-

-L-

-D-

-I-

-G-

-U-

-I-

-L-

-D-

-N-

-G-

current handshape

current handshape groups

Extended (and selected) pinky:

Flexed and selected pinky: -A-, -S-, -E-, or -O-

other

-B-

-U-

-I-

-L-

- -I

-D-

-I-

-N-

-G-

word type name; noun; non-English

current handshape

-B-

-TJ-

-I-

-D-

local transition time zscore of log(time)

current handshape

word type

-B-

-TJ-

-T-

-I.-

-D-

previous handshape

other; word boundary

name; noun; non-English

current handshape

-B-

-TJ-

-T-

-D-

word type name; noun; non-English

-N-

-G-

local transition time zscore of log(time)

following handshape

current handshape

-B-, -C-, -F-, -I-, -I-, or -Y-; -A-, -s-, -E-, or -o-; other

word boundary

previous/following handshape groups

Extended pinky (alone):

Extended pinky (with other fingers):

other

word boundary

Model predictions around -1-, -J-, or -Y-

Model predictions around -I-, -J-, or -Y-

Model predictions around -1-, -J-, or -Y-

Model predictions around -1-, -J-, or -Y-

What's special about -A-, -S-, -E-, and -O-?

Flexed and nonselected pinky:
-L- with and without pinky extension

Flexed and selected pinky:

-A- and -s- have nearly no pinky extension

Flexed and selected pinky:

-E- and -o- both are close to the edge of our coding scheme for pinky extension.

Conclusions

1. Articulatory models of speech production are generalizable to sign languages.

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.
- 3. These models make specific predictions about contextual variation that are supported by data from ASL fingerspelling.

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.
- These models make specific predictions about contextual variation that are supported by data from ASL fingerspelling.
 - 3.1 The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).

- 1. Articulatory models of speech production are generalizable to sign languages.
- 2. The articulatory model of handshape provides a link between phonological specifications and phonetic implementation.
- 3. These models make specific predictions about contextual variation that are supported by data from ASL fingerspelling.
 - 3.1 The nonselected (nonactive) fingers are more frequently the targets of coarticulatory pressure (vs. selected (active) fingers).
 - 3.2 The selected fingers are the sources of coarticulatory pressure.

I must also acknowledge the contributions of many who contributed in ways big and small:

Fingerspelling data

Andy Gabel, Rita Mowl, Drucilla Ronchen, and Robin Shay

Main advisors

Diane Brentari, Jason Riggle, and Karen Livescu

Other researchers

Susan Rizzo, Greg Shakhnarovich, Rachel Hwang, Katie Henry, Julia Goldsmith-Pinkham, and Linda Liu

Support

NSF Doctoral Dissertation Research Improvement Grant Coarticulation and the phonetics of fingerspelling BCS 1251807 and the Rella I Cohn fund for graduate student research

References I

- Brentari, Diane. 1998. A prosodic model of sign language phonology. The MIT Press.
- Browman, Catherine P, and Louis Goldstein. 1992. Articulatory phonology: An overview. Tech. rep., Haskins Laboratories.
- Erol, Ali, George Bebis, Mircea Nicolescu, Richard D Boyle, and Xander Twombly. 2005. A review on vision-based full dof hand motion estimation. Computer vision and pattern recognition-workshops, 2005. CVPR workshops. IEEE computer society conference, 75–75. IEEE.
- Johnson, Robert E, and Scott K Liddell. 2011a. Toward a phonetic representation of hand configuration: The thumb. Sign Language Studies 12.316–333.
- Johnson, Robert E, and Scott K Liddell. 2011b. Toward a phonetic representation of signs: Sequentiality and contrast. Sign Language Studies 11.241–274.
- Liddell, Scott K, and Robert E Johnson. 2011a. A segmental framework for representing signs phonetically. Sign Language Studies 11.408–463.

References II

Liddell, Scott K, and Robert E Johnson. 2011b. Toward a phonetic representation of hand configuration: The fingers. Sign Language Studies 12.5–45.

Sandler, Wendy. 1989. Phonological representation of the sign: Linearity and nonlinearity in american sign language. Foris Pubs USA.